Student Models for Prior Knowledge Estimation
نویسندگان
چکیده
Intelligent behavior of adaptive educational systems is based on student models. Most research in student modeling focuses on student learning (acquisition of skills). We focus on prior knowledge, which gets much less attention in modeling and yet can be highly varied and have important consequences for the use of educational systems. We describe several models for prior knowledge estimation – the Elo rating system, its Bayesian extension, a hierarchical model, and a networked model (multivariate Elo). We evaluate their performance on data from application for learning geography, which is a typical case with highly varied prior knowledge. The result show that the basic Elo rating system provides good prediction accuracy. More complex models do improve predictions, but only slightly and their main purpose is in additional information about students and a domain.
منابع مشابه
Towards Moment of Learning Accuracy
Models of student knowledge have occupied a significant portion of the literature in the area of Educational Data Mining. In the context of Intelligent Tutoring Systems, these models are designed for the purpose of improving prediction of student knowledge and improving prediction of skill mastery. New models or model modifications need to be justified by marked improvement in evaluation result...
متن کاملWhat and When do Students Learn? Fully Data-Driven Joint Estimation of Cognitive and Student Models
We present the Topical Hidden Markov Model method, which infers jointly a cognitive and student model from longitudinal observations of student performance. Its cognitive diagnostic component specifies which items use which skills. Its knowledge tracing component specifies how to infer students’ knowledge of these skills from their observed performance. Unlike prior work, it uses no expert engi...
متن کاملAdaptive Practice of Facts in Domains with Varied Prior Knowledge
We propose a modular approach to development of a computerized adaptive practice system for learning of facts in areas with widely varying prior knowledge: decomposing the system into estimation of prior knowledge, estimation of current knowledge, and selection of questions. We describe specific realization of the system for geography learning and use data from the developed system for evaluati...
متن کاملImproving Contextual Models of Guessing and Slipping with a Truncated Training Set
A recent innovation in student knowledge modeling is the replacement of static estimates of the probability that a student has guessed or slipped with more contextual estimation of these probabilities [2], significantly improving prediction of future performance in one case. We extend this method by adjusting the training set used to develop the contextual models of guessing and slipping, remov...
متن کاملImproving Contextual Models of Guessing and Slipping with a Trucated Training Set
A recent innovation in student knowledge modeling is the replacement of static estimates of the probability that a student has guessed or slipped with more contextual estimation of these probabilities [2], significantly improving prediction of future performance in one case. We extend this method by adjusting the training set used to develop the contextual models of guessing and slipping, remov...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015